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The energy band alignment of ZnO/B-Ga,Os; (201) heterojunction was characterized by X-ray photoelectron
spectroscopy (XPS). The ZnO films were grown by using atomic layer deposition at various temperatures. A type-|
band alignment was identified for all the ZnO/B3-Ga,05 heterojunctions. The conduction (valence) band offset
varied from 1.26 (0.20) eV to 147 (0.01) eV with the growth temperature increasing from 150 to 250 °C. The
increased conduction band offset with temperature is mainly contributed by Zn interstitials in ZnO film. In the
meanwhile, the acceptor-type complex defect V,, +OH could account for the reduced valence band offset. These
findings will facilitate the design and physical analysis of ZnO/B-Ga,0s relevant electronic devices.

Introduction

Gallium oxide (Ga,;O3) has been widely investigated as a
promising ultrawide bandgap semiconductor material
for next generation power electronic devices due to its
unique properties [1]. Among various polymorphs (a, 3,
Y, 8, and ¢€), monoclinic B-Ga,O3 has the most thermal
stability [2]. In addition, B-Ga,Os; has a room
temperature bandgap of 4.5~4.9 eV, and excellent chem-
ical stability [3]. Especially, p-GayOs3 has a high bulk
electron mobility of ~100 cm?/V-s, much higher break-
down field of 8 MV/cm than that of SiC (3.18 MV/cm)
or GaN (3 MV/cm) [4], and the carrier concentration
can be easily modulated by doping Sn and Si [5, 6].
Therefore, p-Ga,Os-based devices including solar-blind
photodetectors [7] and metal-oxide-semiconductor
field-effect transistors (MOSFETs) [8] have been re-
ported. However, limitations still exist in p-Ga,O3-based
devices, such as the poor ohmic contact between the
metal and B-Ga,Os [9]. In recent year, inserting a high
electron concentration metal-oxide-semiconductor inter-
layer, ie., intermediate semiconductor layer (ISL) be-
tween the metal and Ga,O3;, has been shown to be an
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effective resolution because the modulation of energy
barrier at the interface [10-12].

Zinc oxide (ZnO) has attracted much attention because
it has a large exciton binding energy of 60 meV, a high
electron concentration of >10" cm™, and a strong
cohesive energy of 1.89 eV. [13, 14] Additionally, the
lattice mismatch between ZnO and Ga,Os is within 5%
[15]. Various deposition techniques have been devel-
oped to prepare ZnO film, including hydrothermal
method [16, 17] and chemical vapor deposition (CVD).
[18] However, hydrothermal method need a compli-
cated process and the grow rate is quiet slow, and CVD
generally requires quiet high growth temperature above
900 °C. These drawbacks make it challenging to be ap-
plied in devices. Recently, atomic layer deposition
(ALD) has emerged as a promising technique, which
exhibits excellent step coverage, atomic scale thickness
controllability, good uniformity, and a relatively low de-
position temperature. Consequently, atomic-layer-de-
posited ZnO on wide-bandgap semiconductors can
reduce interface disorder and yield more controllable
sample to examine the energy band alignment, which
plays an important role in the carrier transport process
[19]. Up to now, band alignment between Ga,O3 and
atomic-layer-deposited ZnO has not been studied by
experiment, although there are some reports about the
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theoretical band alignment of ZnO and GayOs. [20]
Therefore, understanding the energy band alignment of
atomic-layer-deposited ZnO/B-Ga,Os heterojunction is
highly desirable for the design and physical analysis of rele-
vant devices in the future. In this work, the energy band
alignment of atomic-layer-deposited ZnO on [-Ga,O3 was
characterized by X-ray photoelectron spectroscopy (XPS).
Moreover, the influence of growth temperature of ZnO on
the band alignment was also addressed.

Methods

B-GayO5 (201) substrates with a Sn doping concentra-
tion of ~ 3 x 10'®/cm® were diced into small pieces with
the size of 6 x6 mm? The diced samples were alter-
nately cleaned in acetone, isopropanol by ultrasonic
cleaning for each 10 min, subsequently rinsed with de-
ionized water to remove residual organic solvents. After
that, Ga,O3 substrates were transferred into an ALD re-
actor (Wuxi MNT Micro Nanotech co., LTD, China).
The growth rate of ZnO films was ~ 1.6 A/cycle. Both
40 and 5 nm ZnO films were grown on cleaned p-Ga,O3
using Zn (C,Hs), (DEZ) and H,O at each temperature
of 150, 200, and 250 °C, respectively. The thickness of
prepared ZnO films was measured by Ellipsometer
(Sopra GES-5E). The ZnO(40 nm)/B-Ga,O3 was used as
bulk standard, and the ZnO(5 nm)/p-Ga,O3 was used to
determine the band alignment, in the meanwhile the
bare bulk f-Ga,O3 was used as the control sample. XPS
(AXIS Ultra DLD, Shimadzu) measurements with a step
of 0.05 eV were performed to measure the valence band
maximum (VBM), Ga 2p and Zn 2p spectra. To avoid
interference of surface oxidation and contamination, all
samples were etched by Ar ion for 3 min with a voltage
of 2 kV before XPS measurement. Note that all the XPS
spectra were calibrated by C 1s peak at 284.8 eV for
compensating the charging effect. To identify the band-
gap, the optical transmittance spectra of Ga,Os; and
ZnO were measured by ultraviolet-visible (UV-VIS)
spectroscopy (Lambda 750, PerkinElmer, USA).

Results and Discussion

Figure 1 shows the variation of (a/v)'™ as a function of
photon energy for bulk f-Ga,O3 and the as-grown ZnO
film deposited at 200 °C. The optical band gap (E,) of
the ZnO film and B-Ga,Os can be determined by the
Tauc’s relation [21]: (ahv)Y™ = A(hv - E;), where a is the
absorption coefficient, A is a constant, /v is the incident
photon energy, E, is the optical energy bandgap, 7 is 1/2
for the direct bandgap, and 2 for the indirect bandgap.
Here, both ZnO and [-Ga,O3 have typical direct band
gap that make the value of # is 1/2. Subsequently, E, can
be extracted by extrapolating the straight line portion to
the energy bias at a=0. Therefore, the extracted E, of

1/n

Page 2 of 6

(@ zno
4}
100
& < 9
9
Esal 3
P2 £ 80
> | £
Q9 g 70
= 2} @
(=) S 60
- =
N
= 50 4 i i i i
=1L 200 300 400 500 600 700 800
3 Wavelength (nm)
~ Eg~3.20 eV
0 — T 1 .
20 22 24 26 28 30 32 34
Photon Energy (eV)
4 (b) B -Ga203
100
< £e
£ 3 3
£ 60
o2 5
% é’ 40
< 2 £
o E 20
-
~_ 0
> 1 200 300 400 500 600 700 800
= i Wavelength (nm)
g
3 E ~4.65¢V,
0 )

4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7
Photon Energy (eV)
Fig. 1 The plot of (ahv)? versus hv for a ZnO film grown on quartz

glass b 3-Ga,Os substrate. The inset shows the optical transmission
spectra of ZnO and 3-Ga,0Os, respectively

ZnO and B-Ga,O3 are 3.20 eV and 4.65 eV, respectively,
in good agreement with the reported. [22, 23]

The valence band offset (VBO) can be determined by
Kraut’s method using the following formula [24]

AEy = (EG-EG? ) - (ESS, o) - (E&e5s-E55,):
(1)

Egzzzops —ESa20s (EZ;9,~Evisn) represents to the en-

ergy difference between Ga 2p (Zn 2p) core level (CL)

and VBM of bulk B-Ga,O3 (ZnO), and E¢e’y?~EZ:S, de-

notes as the energy difference between Ga 2p and Zn 2p
core levels. Figure 2 shows all CL spectra including Zn
2p of ZnO (40 nm)/B-Ga,O3 and ZnO (5 nm)/B-Ga,0s,
Ga 2p of bulk Ga,O3 and ZnO (5 nm)/p-Ga,Os3, as well
as valence band spectra from bulk Ga,Os; and ZnO
(40 nm)/B-Ga,O3. Figure 2a presents the CL spectra of
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Fig. 2 High-resolution XPS spectra for core level and valence band
maximum(VBM) of a Zn 2p core level spectrum and VBM from

40 nm ZnO/B-Ga,0s, b Ga 2p core level spectrum and VBM from
bare 3-Ga,0s, and ¢ the core level spectra of Ga 2p and Zn 2p

obtained from high-resolution XPS spectra of 5 nm ZnO/[3-Ga,03

Zn 2p on the ZnO (40 nm)/B-Gay,Os;, which is quiet
symmetrical indicating the uniform bonding state, and
the peak locates at 1021.09 eV corresponds the Zn-O
bond [25]. The VBM can be determined using a linear
extrapolation method [26]. The VBM of ZnO is located
at 2.11 eV. In Fig. 2b, the peak located at 1117.78 eV cor-
responds to the Ga-O bond [27] and the VBM of Ga,03
is deduced to be 2.74 eV according to the method men-
tioned above. The CLs of Zn 2p and Ga 2p in the ZnO
(5 nm)/B-GayO3 are shown in Fig. 2c. According to Eq.
(1), the VBO at the interface of ZnO/Ga,O; is deter-
mined to be 0.06 eV.

Based on the calculated E, and AE,; the conduction
band offset (CBO) at the ZnO/Ga,O; interface can be
easily deduced from the following equation:
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AEc = EJ®%-EJ"0-AEy, (2)

where EgG"ZO3 and Eg”o are the energy bandgap for
B-Ga,O3 and ZnO, respectively. The detailed energy
band diagram for ZnO/B-Ga,Os is depicted in Fig. 3.
The interface has a type-I band alignment, where both
conduction and valence band edges of ZnO are located
within the bandgap of $-Ga,0s.

To further examine the effect of the growth
temperature on the band alignment between ZnO and
B-Ga;O3, the ZnO films are also grown at 150 and
250 °C. Note that ZnO films prepared by ALD at the
temperatures of 150-250 °C have poly-crystalline na-
ture. Figure 4 shows the high-resolution O 1s XPS
spectra of the ZnO films grown at different tempera-
tures. Each O 1s spectrum can be well separated into
three components using Gaussian-Lorentzian function.
The peaks centered at 530.0 (O1), 531.6 (0O2), and
532.4 (0O3) eV correspond to the Zn-O bands, oxygen
vacancies, and —OH group [28, 29], respectively. The
relative percentage of different components is also
calculated according to the peak area, digested in
Fig. 4. It shows that the relative content of oxygen
vacancies increases from 10.7 to 15.0% due to the de-
composition of precursors and the increase of Zn in-
terstitials. However, the —OH counterpart reduces
from 5.1 to 1.9% because of more complete reactions
between DEZ precursors and surface —OH groups in
this temperature range [30].

Figure 5 shows the band offsets of ZnO/B-Ga,O3
heterojunctions as a function of growth temperature.
The CBO increases from 1.26 to 1.47 eV with the
growth temperature varying from 150 to 250 °C. The
native donor defects include the Zn anti-position,
oxygen vacancies, and Zn interstitials. However, the
formation energy of anti-position atoms is so high
that its concentration is extremely low. The Zn in-
terstitials have more influence on the conduction
band minimum (CBM) than that of the oxygen va-
cancy because the CBM is mainly dominated by the
4s orbit of Zn atom. [31] As a result, the increased
CBO of 0.21 eV could be mainly contributed by Zn
interstitials. On the other hand, the VBO reduces
from 0.20 to 0.01 eV with the growth temperature
increasing from 150 to 250 °C. The native acceptor
defects include the O anti-position, Zn vacancies,
and oxygen interstitials [32], whose formation ener-
gies are high and their number can be even negli-
gible. Furthermore, the most native acceptor levels
are deep within the ZnO bandgap, thus they have
little effect on the VBM [33]. However, V,, + OH is
favorable to be presented duo to the low formation
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Fig. 3 Schematic band alignment diagram of the ZnO (200 °C)/3-Ga,O5 heterojunction

energy, [34] V,,+OH may occur with an electron
belonging to OH bonds. The lattice hydrogen H*
jon acts as a compensating center, and it can bind
with the Vz, around the dislocation and stacking
faults core, ensuring the acceptor-type complex de-
fect for p-type conductivity [35]. More residual —~-OH
groups in the ZnO film are obtained at a lower

growth temperature, i.e., 150 °C [36]. The acceptor
level near the VBM reduces with the temperature,
leading to an effectively downward shift in E, of
ZnO, thus the AE, becomes lower. Therefore, the
ZnO deposited at lower temperature could be more
efficiently to reduce the barrier height at the inter-
face between the metal and Ga,Os;.
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Conclusions

In summary, the energy band alignment at atomic-
layer-deposited ZnO/B-Ga,O3 (201) was characterized
by XPS. A type-I band alignment formed at the ZnO/
[B-Ga,Os3 interface. The conduction band offset increased
from 1.26 to 1.47 eV while the valence band offset de-
creased from 0.20 to 0.01 eV with the temperature in-
creasing from 150 to 250 °C. These observations suggest
that the ZnO deposited at lower temperature is favorable
to be a promising ISL to reduce the electron barrier
height at the ZnO/B-Ga,Oj3 interface.
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